CGA web Site RDBMS functionality requirements

Overview

Last Updated on: Friday, January 02, 2009

In 2008 The CGA started redevelopment of its web site. This document describes the functionality the RDBMS should support, as well as some optional extras.

Accounts

We should encourage any person who interacts with the CGA to have an account. Anyone with an account should be able to login, update their contact info, request a PAYPAL link to pay the CGA for membership, or make a donation. They should also be able to configure privacy settings for their contact info. Every account has a unique ID. There should be a field for AGA ID as well, to facilitate ratings comparisons.

Each account should be either citizen, Canadian resident, or US, or other foreign. There are many US players who regularly participate in Canadian tournaments. They should have an account so they can be included in ratings.

Accounts should have a state. The possible states are:

Member: members have an expiry date

Temporary member: Someone registers to join the CGA becomes a temporary member. They then receive membership privileges for some period (30 days?). If the membership secretary does not record an expiry date within 30 days the account moves to disabled status.

Disabled: Mainly for accounts that owe the CGA money, it requires an admin to activate the account before it can receive membership privileges again.

There should be a Boolean flag to note which accounts are professionals.

All accounts should have a rating (although a possible rating state should be nonplayer). However normal reports should only display the ratings of CGA members. However when we send a report for use by tournament directors it should have all accounts, not just current members.
Accounts can also be marked as volunteer (and if so there should be a field listing what they do) or executive.

Members should be able to view all their previously rated games, with the impact on their ratings. Non members should be able to view their rated games, but not any of the resultant ratings data. We allow them to view the games since we’d like data errors reported.

Whenever an account is created an email should be sent to the Account holder, so we can validate the email is entered correctly. Also if they update their profile with a new email a test email should be sent.

Points and Awards

Any accounts should be able to accumulate points and awards. Currently we have one type of points (Pair Go points), with another under discussion (International selection points). We should be able to tracking any players point history, and each point change total should be noting the reason for the points being awarded. Awards would include Event winners (I.E any Canadian Tournament), as well as selections for international representation. These would include the World Amateur rep, the Prime Ministers Cup rep, the Youth rep, the Fujistu reps, and ING reps. We might separate tournaments into levels for awards display (level 1 Canadian Open, level 2 large regional event, level 3 small local tournament). For each non-tournament winner award there should be a note how the winner was selected. I.E Currently Pair Go point leaders, or top Canadian citizen. For the international selection awards we would like to also track the resulting placement of the award winner.

Membership history

We should be tracking the membership history through time. This should allow us to answer questions like:

1) What was the peak membership in a given year?

2) What percentage of members from 13 months ago are still CGA members?

3) What percentage of members from 25 months ago are still members?

4) What percentage of members from 5 years ago are still members?

5) How many people have been CGA members in the last 5 years? Ever?

6) How many 1D+ players have ever been CGA members

7) How many Canadian Citizens have ever been 1D+?

Clubs

Clubs should record all the meeting information, and have a list of accounts for contact. We should auto-generate an email each year asking the contacts to confirm the information, and if no contact confirms we should mark the club as unconfirmed. Also club contacts should be able to edit their club info when they are logged in.

Tournament directors

Anyone who runs a tournament in Canada can ask to be granted this status. It will allow them to download the TD membership data, and ideally also update their event information on the web site. Tournament directors should be able to create accounts for tournament participants if they have collected adequate contact information.
Events

There should be an account flagged as an owner (normally a TD, since most events will be tournaments). As now there should be links to the event information, and results afterwards. Winners should be recorded separately from the rated games data, since that does not describe how tiebreaking was performed. However, we should be able to display all rated games from a given event as well as the event result file.
Rated games
We should have a table recording games between accounts. The result, handicap, event, event type, and associated SGF file(if any) should all be included. Event types are tournament, club, fast tournament.
Ratings

We should be able to query any set of rated games, and collect them to be sent to a ratings engine. We should be able to record the state of all ratings before a set of games is processed, and roll back and reprocess if errors are later detected.
SGF Files

They should have an event name, an event link if it was a Canadian event, a Boolean saying if there are comments. If the game is commented there should be a note on the comment level(professional, top amateur, participants, or other). The file may be linked to a rated game. The Go study page should have queries for retrieving stored games.
Donations

All donations should be recorded with a date, amount, associated account, whether the donor wishes to be anonymous, and notes about the donors wishes.

Membership history

We should be tracking membership though time (at least retaining something like the final membership total of each month). We have only some limited history of past membership numbers, but ideally there would be a page displaying an integrated graph.

The past data from 1990-2003 is posted on the documents page, Chuck should be asked to provide what he can from the 2003-2008 period.
Possible extras

It would be useful (in particular for the Winter Cup) to define a set of tournament participants. They would then be able to view each others contact information when logged in even if the information was not marked public.

Ideally we can mark content on the site as available to members only.
Ratings details

The following discussion lists some use cases for the ratings system, and gives one possible implementation. The point of the implementation examples is to show the use cases are feasible, not to specify how they should be implemented.

The data in the ratings tables are intended to support the following

1) Tracking a current rating for each Go player in the CGA database
2) Permit display of ratings history information
3) Easy integration with different ratings algorithms
4) Display to players rated games they have played, and how their rating has been impacted.
5) Correction of errors - some examples of the kinds of errors we would want to correct:

a) An error in the entry of a specific game.
b) Handicap information of a whole tournament entered incorrectly.
c) A tournament submitted to ratings out of order (perhaps months late).

As I understand it there are two classes of ratings system:

1) Maximum likelihood estimate systems (MLE). Examples include the AGA system, the IGS & KGS systems.

2) Systems where the change depends only on the current players rating status, and the result. Examples include the European Go Federation's ELO based system, Glicko, or Chuck's algorithm.

For a Maximum likelihood estimate system (MLE) you must select a set of games, then regenerate a new set of ratings, and repeat as needed through time. As you add games you would think you might just select all results and recalculate. There are two reasons this doesn't make sense:

1) With too many games the software may not be able to fit the data
2) More fundamentally, as you move through time people's strength changes, so it does not make sense to treat their games as one dataset.

However, the more games processed together the better the fit the ratings software can come up with. Users of MLE systems must decide their trade off between the two considerations.

In non-MLE systems as long as you process the games in the correct order you have no decision to make. Note however these systems are path dependent. The results for the ratings will be different if you enter the round 1 games of a tournament before the round 6 games, where that is not true for a MLE system, or at least not usually true…It is possible a MLE system might fall into a different local optima based on the order of starting conditions and how the code is written.

When we correct a data error we have two choices

1) Make some adjustment to the current ratings for the players involved in the erroneous game(s). Also perhaps some manual interventions for other impacted players
2) Fix the error in the data. Then reprocess all game info with the now updated game results. This means one error could potentially trigger an update to all ratings, although most will presumably be minute.

Currently my understanding is Chuck uses approach (1). I would like to use approach (2) with the new database.

Here is a rough outline of a table structure that would support the use cases above

Sample Ratings tables
MATCH TABLE // Normally holds rated games, but also holds reset events

Player1 // We will store both a name and person ID for this. The person ID may be missing
Player2 // We will store both a name and person ID for this. The person ID may be missing
Result

Handicap

Event

date

time

round // so games are processed in the correct order within a tournament
Processing_event_ID

IsSet // To support assigning an initial rank, or reseting the rank

Set_rank // The rank he should be set or changed to

// This table holds info on when the ratings software was run

RATINGS PROCESSING TABLE

Processing_event_ID

Date

processing_configuration

dirty // a boolean true false, saying whether this event needs to be reprocessed

CURRENT RATINGS TABLE

Person_ID

rating_value

rating_string // The rating value converted to a string like 7 KYU

Rating_Context // Extra information the rating algorithm needs to store

IsNew // If this rating is an original rating, not generated by the ratings algorithm

ProcessingEvent // The processing event that generated this rating

// This table will have multiple entries per person, tracking their rating through time
// The date time information is stored with the processing event, not duplicated here

// I would suggest we record one set of ratings per month in this table (assuming there

// is some change to the ratings in the month).

RATINGS_HISTORY_TABLE

Person_ID

rating_value

rating_string // The rating value converted to a string like 7 KYU

Rating_Context // Extra information the rating algorithm needs to store

ProcessingEvent // The processing event that generated this rating
Note the table structure above is set to work with one stream of ratings (I.E not running multiple algorithms concurrently).. I'll discuss in one of the use cases below how we would compare algorithms.

Now some examples of the various use cases of the above tables, and how the use cases would interact with the tables.
Use case 1:

 A new user is entered to the system, with an initial rating

a) Add a MATCH entry with type set
 b) Add an entry to the CURRENT_RATINGS table.
Use case 2:

: A set of new games arrives to be processed

a) Add the entries to the match table. Note some entries may be missing one or both person IDs

b) If using a MLE ratings algorithm, ratings officer decides whether or not to perform a ratings update. If not using a MLE system a ratings update is performed always.

c) If we decided to perform an update, add a new entry to the ratings event table with state dirty. Set the ratings event of matches with no ratings event to this event (Including those with person ID's missing). Then call PerformRatingsUpdate()
Use case 3:

: An error in a game is found

a) Update the match record

b) Mark the processing event for this match all all subsequent events as dirty

c) Call PerformRatingsUpdate()
Use case 4:

An error in an initial entry rank is found

Same as any other game error, except the match entry to use will be of set type instead of game type.

Use case 5:

: We resolve a stored match to a Person_ID when one was not found before
a) Update the match record.

b) Mark all ratings event subsequent to this as dirty (they need to be rerun)

c) Call PerformRatingsUpdate()
Use case 6:

6: A missing set of club games is found from 3 months back

a) If running a MLE system, decide which ratings event should have included these games, or whether they should have their own. If not using MLE always create a new ratings event with the date of the games

b) Mark all events from the chosen event as dirty

c) Add the new games, associated with the new or chosen processing event

d) Call PerformRatingsUpdate()
Use case 7:

: A user asks for his rating to be reset, or enters a tournament at a rank very different from his current rating.

a) Player X last played a rated game a year ago when he was 15K. He is now 3K. He wants to have his rank reset.

b) Create new processing event

c) Create new reset MATCH entries for each player entering the tournament at a different rating than his current rating, and set the processing event to the new event.

d) Add new MATCH game events for each game in the tournament

e) Call PerformRatingsUpdate()
Use case 8:

 We wish to compare the current rating algorithm to another algorithm

I won't describe this in detail now; we can leave this for later. If we are comparing a non MLE to MLE system we will need to choose what processing events to run, otherwise the broad approach should be obvious.

Sample Ratings update algorithm

Function PerformRatingsUpdate() // pseudo code

{

// Note we need to have the previous ratings available from the history table

// Find the first event in the history table previous to the first dirty event. Add all events between these to the dirty list also.

// Collect initial ratings. Load from the history table a rating for each player, from the newest non dirty event. If we are only processing one ratings event which is new the input ratings should come from the current ratings table instead of the history.

List DirtyEvents;

For each in DirtyEvents

{

Collect the matches associated with the event.

Apply any set/reset events first, so we arrive at correct initial ranks
Walk through the match events, generating new ratings (all in memory, no table adjustments)

// We are the last ratings event in a month

if (!IsLastDirtyEvent && (current_event.month != next_event.month))

{ //Add the current ratings to the history table }

if (last_dirty_event)

{ // Update the current ratings table.}
}// End For

} // End function
